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Abstract

We introduce an image triage system which facilitates the collaboration of human analysts,
augmented human analysts, and automated technology to efficiently and accurately classify
a two-class database of images. The system iteratively allocates images for binary classifica-
tion among heterogeneous agents according to the Generalized Assignment Problem (GAP)
and combines the classification results using the Spectral Meta-Learner (SML). In simulation,
we demonstrate that the proposed system achieves significant speed-up over a naive parallel
assignment strategy without sacrificing accuracy.



Contents

1 Introduction 2

2 Plan 3
2.1 Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Deliverables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Approach 4
3.1 Image Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1.1 Branch and Bound Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.1.2 Lagrangian Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1.3 Multiplier Adjustment Method . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.4 Greedy Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Joint Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.1 Spectral Meta-Learner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.1 Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.2 Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.3 Convergence Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Methods 16
4.1 Expected Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Simulation 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Simulation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Results 18
5.1 Analytical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Simulation 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2.1 Increased Confidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.2 Evolution of Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.3 Simulation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Discussion 23

7 Conclusion 24

A Multiplier Adjustment Method 25

1



1 Introduction

When working with large databases of unlabeled images, there exists a problem of how to efficiently
automate the labeling and organization of such data. In the event of sparse training data, the
utilization of autonomous algorithms alone leads to over-fitting and poor labeling fidelity. Human
analysts may require fewer training images, but the exclusive use of humans may pose a prohibitive
time cost. A better system may optimally utilize both the accuracy of human analysts and the
speed of intelligent agents for collaborative image triage.

Brain-computer interface (BCI) technologies attempt to improve the performance of a hu-
man through augmentation. Rapid Serial Visual Presentation (RSVP), a brain-computer interface
paradigm in which brain-signals are recorded from a person while passively viewing images at high
rates of speed (2-10 Hz), can be used for high-throughput binary image labeling, but this speed-up
comes at the cost of a reduction in labeling accuracy [1].

Sajda, et al. address this problem in [23] through the use a computer vision algorithm to
complement the efforts of a human performing image triage via RSVP. The authors explore a
serial implementation in which either the computer vision algorithm or RSVP agent first screen the
database before the other agent classifies the images. This human-system approach is not unlike the
model of multi-class image database labeling presented by Joshi, et al. in [13], where an automated
computer vision system prompts a single human to provide binary decisions.

The field of optimal crowd-sourcing addresses the solution of large sets of simple problems such
as image triage with human-only ensembles [10–12, 14, 15, 21, 25]. In this paradigm, simple tasks
are distributed in parallel to numerous human agents at low-cost (i.e. Amazon Mechanical Turk).
Necessary to these approaches are decisions about task allocation and aggregation. In representative
allocation approaches, Karger, et al. use a random assignment of tasks with the assumption of
agent and task homogeneity [15], and Ho, et al. use the Generalized Assignment Problem (GAP)
to determine an optimal allocation of tasks among heterogeneous agents and tasks [10]. As the
system can dynamically increase the pool of potential agents, a solution must balance the cost of
recruitment with the expected performance of an agent [14]. This prioritizes the ability to infer
agent performance without labeled data. Numerous approaches have addressed combining labels
of noisy agents and inferring the performance of individual agents from the aggregated responses,
of which, the work of Parisi, et al. provides an elegant computational approach to achieve both
through the so-called Spectral Meta-Learner (SML) [21].

Here, we present and test a heterogeneous multi-agent image triage system which achieves
human-level accuracy while finding a balance in the trade-off between time-cost and accuracy.
Our system is designed to utilize three types of independent, heterogeneous agents (computer
vision, RSVP, and human), which are assigned images for classification in parallel according to
the GAP. Assignment parameters for those agents adapt over multiple iterations of assignment
and classification according to the SML. This image triage system (conceptualized in Figure 1)
addresses the following:

Accordingly, we want to determine:

1. Image Assignment – How do we optimally assign images in each iteration in order to balance
value and time?

2. Joint Classification – How do we infer the label of a task given a set of labels for that task
from multiple agents?

3. System Implementation – How to design and develop a flexible system which achieves parallel
efficiency?
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Figure 1: The image triage system. An assignment node distributes images to agents
in parallel. The agents perform binary classification, and the results are consolidated at
a fusion node. At this point, the confidence in the image classification label is used to
threshold images for completion or routing back to the image database for re-assignment.
Two forms of feedback occur in the system: the return of images for further assignment and
the inference of agent and image properties for further intelligent assignment. Here, agents
can be computer vision algorithms, RSVP subjects, or self-paced image analysts.

2 Plan

2.1 Schedule

• Develop assignment module (15 October - 20 December)

– Implement branch and bound algorithm

– Validate branch and bound algorithm

– Implement greedy search algorithm

– Mid-year presentation

– Mid-year report

• Revise and update project plan (20 December - 24 January)

• Build image triage System (25 January - 28 February)

– Build agent classes

– Develop message-passing framework

– Integrate all components into a system

• Test image triage system (1 March - 15 April)

– Testing

– Performance analysis of test results

• Conclusion (15 April - 13 May)

– Final presentation

– Final paper

2.2 Deliverables

• Software
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– Image triage system

– Execution script

• Data

– Reduced Caltech101 image database

– Computer vision models

• Analysis

– Performance analysis of test results

– Implications for human-autonomous systems

3 Approach

3.1 Image Assignment

This image assignment problem, where we are looking for the optimal assignment policy over all
images and agents, {xji}i∈I,∈J , can be mapped onto the Generalized Assignment Problem (GAP)
as in [10]. The formulation follows [16]:

Z = max
x

∑
i∈I

∑
j∈J

vjixji (1)

subject to

1.
∑
i∈I

cjixji ≤ bj , j ∈ J

2.
∑
j∈J

xji = 1, i ∈ I

3. xji ∈ {0, 1}
4. cji, bj ∈ Z+

5. vji = rj − si + max
i∗∈I

si∗

Besides having known solutions, GAP captures the important aspects of the assignment problem.
Principally, assignment is a decision problem which requires discrete solutions, captured in the 0-1
integer program. Also, the constraints encode the inherent trade-off between assignment value and
agent time.

Although GAP is a NP-hard problem, the decision problem is NP-complete [18]. Solving GAP
is at least as difficult as any problem in NP and has no known polynomial time solution algorithm,
but verifying that a solution is feasible is computable in polynomial time [17]. This ability to verify
solutions allows exact solution methods which seek to exhaustively search the solution space for a
global maximum.

3.1.1 Branch and Bound Algorithm

Solving GAP with the Branch and Bound algorithm (B&B) is well-established in the literature
[8, 16, 18]. B&B is a divide and conquer optimization approach with a bounding function, search
strategy, and branching strategy. The algorithm searches branches, or sub-problems of the overall
problem, a m-nary tree of height n, and calculates bounds on the sub-problems. Always, a feasible
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solution is maintained as a lower bound for the optimal solution. This incumbent optimal solution
is compared to the upper bound of all sub-problems. For a maximization problem, if the upper
bound for a given sub-problem is less than the incumbent optimal solution, then the algorithm can
prune these sub-problems and all subsidiary sub-problems. Otherwise, each sub-problem branches
into further sub-problems for search. The algorithm iterates until the solution space is exhausted,
and a global optimum is found.

Figure 2: The B&B Algorithm for GAP. The initial candidate problem has no tasks assigned
(the grey node). From this problem, the first task can be assigned to each of the m agents,
creating m branches. Likewise, for tasks i = 2, . . . , n, each task can be assigned to one of
the m agents. For each of those sub-problems, an upper bound is calculated and stored
if it exceeds the incumbent optimal feasible solution. Here, xji = 1 corresponds to pij in
Algorithm 1.

GAP offers an intuitive branching strategy; each image, i ∈ I, can possibly be assigned to any
one agent, j ∈ J . This allows a systematic search though each of the n images and branching at
each task to create m sub-problems (see Figure 2). For each explored sub-problem, if the upper
bound is greater than the incumbent solution, the sub-problem and its upper bound are stored
in a running queue. The search strategy consists of selecting the candidate sub-problem from the
running queue with the greatest upper bound. For the bounding function, we use Lagrangian
relaxation (LR) of constraint [2] of (1) as in [8] and [9]. B&B pseudo-code is shown in Algorithm
1 [4,9].

If all m×n sub-problems are explored, B&B would be a strictly combinatorial search algorithm.
The computational savings arise from sub-problems which are not enqueued. If the upper bound
of a sub-problem is less than the incumbent optimal solution, it is not enqueued for later search.
For each sub-problem (xji = 1, i ∈ I, j ∈ J) which is pruned, O(m(n−1)) sub-problems do not
require execution of the bounding function. This highlights the importance of a tight bound from
the bounding function and a feasible solution to help prune sub-problems throughout B&B.

3.1.2 Lagrangian Relaxation

Considering the set of constraints on GAP, we faced a choice of which constraint subset to relax.
Fisher, et al. show decreased computational cost from relaxing constraint [2] over [3] in (1) [9].
Additionally, Morales, et al. prove that the bound from relaxing constraint [2] offers a tighter
bound than that of constraint [1] or [3] of (1) [18]. Therefore, we introduced Lagrange multipliers,
λi, to relax the semi-assignment constraints (constraint [2] in (1)), which results in the following
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Algorithm 1: Branch and Bound

Data: Z0

Result: x
Z = Z0, queue = p0;
while queue 6= ∅ do

Select pi ∈ queue
for j ∈ J do

Zij = bound(pij);

if Zij > Z then

if xj is feasible then
x = xij , Z = Zij

else
add pij to queue

end

end

end

end

Lagrangian formulation of (1):

L(x,λ) =
∑
i∈I

∑
j∈J

vjixji +
∑
i∈I

λi

1−
∑
j∈J

xji

 . (2)

The dual formulation,

d(λ) = max
x

∑
j∈J

(∑
i∈I

(vji − λi)xji

)
+
∑
i∈I

λi (3)

=
∑
i∈I

λi +
∑
j∈J

(
max
x

∑
i∈I

(vji − λi)xji

)
,

subject to constraints [1,3-5] of (1), provides a bound on the optimal solution:

min
λ
d(λ) ≥ Z ≥ Zfeasible, (4)

where Zfeasible is any feasible solution. Notice that the dual formulation reveals m independent
optimization problems for fixed λ. We use this problem structure to solve the saddle-point problem
directly via sub-gradient descent [2]:

xk+1 = arg max
x

∑
i∈I

∑
j∈J

(vji − λki )xji

subject to
∑

i∈I cjixji ≤ bj

λk+1
i = λki + αk

1−
∑
j∈J

xji

 (5)

6



We use sub-gradient descent because the dual problem, (3), is not everywhere differentiable. A
sub-gradient of a function f at t0 is a vector, ν ∈ ∂f(t0), such that for t,

f(t) ≤ f(t0) + ν(t− t0).

As with gradient descent, the optimal solution to the dual problem occurs when zero is a sub-
gradient of the dual problem [2]. In (5), αk must satisfy limk→∞ αk = 0 and limn→∞

∑n
k=1 αk =∞.

For our implementation, a dynamic step-size was used. The step-size was decreased by a factor
of γ < 1 each time the objective function value remained unchanged between iterations, on the
assumption that this indicated an over-shoot of the local minimum. Under these conditions, this
iterative procedure guarantees error with convergence on the scale of O(α‖g‖2) [19]. The stopping
condition was based on the convergence rate for dynamic step sizes. When the bound on the error
achieved some relative threshold, the descent algorithm terminated.

The primary advantage of relaxing the semi-assignment constraint is the structure of the dual
formulation (3), which yields independent optimization problems for each agent:

dj(λ) = max
x

∑
i∈I

(vji − λi)xji.

These problems, known as the 0-1 knapsack problem, can be solved exactly by a pseudo-polynomial
time dynamic programming algorithm.

It is known as the knapsack problem because it can be easily visualized as having n items of
unique weights and values with a knapsack of fixed weight capacity. The problem is to determine
which items if packed will maximize the value in the knapsack. The dynamic programming approach
leverages the fact that to determine whether an item is optimally packed for a given capacity, it
helps to know the optimal packing list for a problem of a lower capacity. The solution algorithm is
shown in Algorithm 2 [20].

Algorithm 2: 0-1 Knapsack

Data: vj = (vj1, . . . , vjn)T , cj = (cj1, . . . , cjn)T , bj
Result: xj = (xj1, . . . , xjn)T , Zj
M = {0}n×bj , S = {0}n×bj ,xj = {0}n;
for i = 1, . . . , n do

for l = 1, . . . , bj do
M(i, l) = max(M(i− 1, j),M(i− 1, j − cj(i)) + vj(i));
if M(i− 1, j − cj(i)) + vj(i)) > M(i− 1, j) then

S(i, l) = 1;
end

end

end
for i = n, . . . , 1 do

if S(i,K) then
xj(i) = 1,K = K − cj(i);

end

end
Zj = M(n, bj) ;

The complexity of the dynamic programming algorithm is linear in the number of tasks, O(nbj),
and only grows in complexity with respect to the order of bj . Since bj is of sufficiently low order for
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many problems, the dynamic programming algorithm provides a computationally efficient method
for solving the knapsack problem.

3.1.3 Multiplier Adjustment Method

In [9], Fisher, et al. present another approach to solving the dual problem: the multiplier ad-
justment method. Similar to the steepest descent method, we search the solution space for the
single canonical direction in which the smallest decrease in one of the Lagrange multipliers, λi,
will result in an assignment for a currently unassigned task. Whereas the steps of the sub-gradient
descent method often result in large jumps across the solution space–or alternatively, many small
steps–these measured descent steps result in a smoother path toward the optimal solution. The
multiplier adjustment method remains the standard for comparison of heuristic solution techniques
for GAP [16,18].

We followed the algorithm proposed in [9] for implementation of the multiplier adjustment
method. See Algorithm 5 in the appendix for pseudo-code.

3.1.4 Greedy Search

Efficient implementation of B&B requires a feasible solution to provide a lower bound for solutions
(see (4)). A tight lower bound requires fewer problems to be enqueued during iterations of the
B&B, but it also offers an alternative stand-alone approach to the image assignment problem. In
the image labeling system, there will necessarily be a trade-off between speed and optimality of
the GAP solution. If a solution method can heuristically provide a good enough solution while
saving the cost of an exhaustive B&B search, than it may in fact be the better option. Algorithm
3 shows the greedy search procedure implemented in testing as both a stand-alone method and the
initialization of the B&B algorithm. The procedure is based on step (3) in [9].

3.1.5 Validation

Without a known polynomial time algorithm for confirming that an assignment solution is the
globally optimal solution, we use the internal MATLAB mixed integer programming function
(intlinprog()) in the Optimization Toolbox as the known solution for validation results. As the
maximum objective value, Z, is not necessarily unique with respect to assignments, x, comparisons
are made according to the objective value of the respective solution methods. The methods were
implemented in MATLAB R2015b. Validation of the task assignment module ran on a Windows-
based laptop computer with an Intel Core i7 2.6 GHz processor and 8GB RAM.

In [9], the results of multiple implementations of B&B were compared for various GAP problems,
and these problem sizes are adopted here. A summary of validation problem sizes is shown in Table
1.

We have implemented three distinct methods for solving GAP. The first two are variations of
B&B, and thus exact: the sub-gradient descent method ((5)) and the multiplier adjustment method
(Algorithm 5); the third, heuristic: the greedy method (Algorithm 3). Although solutions are not
verifiable, we can ensure that solutions strictly satisfy the problem constraints of (1). The B&B
methods strictly enforce the constraints and guarantee a solution for a feasible problem. This is
reflected in experimental results (see Table 2). The greedy method strictly enforces the constraints,
but is not guaranteed to return a solution. These cases are reflected in the table as infeasible
solutions. Notably, MATLAB failed to find solutions which satisfied the problem constraints on
almost all problems. The MATLAB solver uses B&B with the integer constraint relaxed, and
only enforces the integer constraint (constraint [3] in (1)) within a tolerance of O(10−6) and the
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Algorithm 3: Greedy Search

Data: v, c,b
Result: x, Z
for j ∈ J do

[xj , Zj ] = knapsack(vj , cj , bj);
end
if x is feasible then

Z = vTx;
return;

else

I0 = {i ∈ I|
∑
j∈J

xji = 1};

for i ∈ I0 do
xji = 0 ∀ j ∈ J ;
1. sort(vji)
2. assign xji ∀ j ∈ J, i ∈ I0;
if x is feasible then

Z = vTx;
return;

end

end

end

Agents (m) Tasks (n) Problems

3 10 25

3 20 25

5 20 25

5 520 25

10 75 25

8 100 25

12 150 25

17 200 25

Table 1: Problem sizes of GAP for validation of B&B algorithm implementation. For each
problem size, assignment values, v, assignment costs, c, and agent budgets, b were generated
randomly to accommodate feasible problems (vji ∈ R ∼ unif(1, 5), cji ∈ Z+ ∼ unif(1, 5),
and bj = 2

m

∑
i∈I cji ∈ Z+).

assignment and cost constraints (constraints [1,2] in (1)) to a tolerance of O(10−9). This ensures
that the objective value of MATLAB’s solutions upper bound the optimal solution for all problems.

We next compare the objective value, Z, of the MATLAB solution against the implemented
methods. Here, we measured accuracy in terms of relative error in order to account for the problem
size. Results are depicted in Figure 3. Although MATLAB solutions are not strictly feasible, they
provide a tight upper bound on the objective function value. As shown, the greedy algorithm
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Method Feasible Solutions

Sub-gradient 200

Multiplier Adjustment 200

Greedy 200

MATLAB 14

Table 2: Feasible solutions out of 200 validation problems. B&B has a strict enforcement of
the integer constraints as well as the enforcement to machine tolerance of the assignment and
cost constraints. The greedy method only provides a heuristic solution and can terminate
without a solution. Those cases are reflected here. MATLAB satisfies the constraints with
a much lower tolerance than either of the methods implemented here.

matches the accuracy of the exact methods almost perfectly. The maximum relative error of any
of the three methods is on the order of the integer tolerance of the MATLAB solver.

Figure 3: Histogram of the relative error of target value, Z, for greedy and B&B methods.
Relative error is defined as follows: ‖ZMATLAB−Zgreedy/B&B‖/‖ZMATLAB‖. The accuracy
of the greedy method nearly equals that of the B&B algorithm.

Beyond accuracy, we would like to compare the speed of all three methods relative to MAT-
LAB’s implementation. In order to analyze time complexity, we conducted a one-way analysis of
variance (ANOVA) in which the factor is problem size. This analysis requires the assumptions
that data within a given problem size is independent and identically distributed (IID), error within
problem sizes is normally distributed, and variance across problem sizes is homogeneous. The first
assumption is easily satisfied by our problem set-up; however, the latter require further considera-
tion. The combinatorial nature of B&B will necessarily create a heavy-tailed effect in the data since
some problems will require the algorithm to enqueue and bound many orders of magnitude more
sub-problems. This effect will also result in growth of variance with problem size; however, these
problems will be infrequent, and if treated as outliers, the data should easily satisfy the second and
third assumptions. Using a log-log scale also helped to minimize the effects of outliers.

As shown in Figure 4, all methods grow sub-linearly with respect to the problem size. We used
the greedy algorithm in the implementation of the image labeling system because it achieved the
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Figure 4: Analysis of variance for problem size versus computational time (log− log). The
F-statistic, F (7, 192), is 14.89, 343.08, 996.8, and 23.41 respectively (p < 1.0 × 10−9).
The horizontal line in the box-plots is the median of the data. The top and bottom of
the box reflect the 75th and 25th percentile respectively. The magenta dots represent
outliers (greater than 2.7 standard deviations from the mean). Two medians are significantly
different if their notch intervals do not overlap. The respective complexities of the methods
are as follows: sub-gradient (O((m×n)0.78)), multiplier adjustment (O((m×n)0.90)), greedy
(O((m× n)0.87)), and MATLAB (O((m× n)0.23)).

same performance with fewer outliers than the B&B methods. The delay in subsequent iterations
would harm the performance of the system. In the interest of minimizing wall time, a fast, but
sub-optimal, solution is preferred. In the event that the greedy method does not return a feasible
solution, the system would default to the sub-gradient descent method.

3.2 Joint Classification

Upon the receipt of image labels from the agents, we can consider the binary decision of the agents
as conditionally independent discrete random variables, Aij : {−1, 1} → R, and the set of decisions

from m agents for a single image, (Ai1, . . . , A
i
m)t, as a joint random variable, Ai : {−1, 1}m → R. If

the true label of an image is a discrete random variable, Y : {−1, 1} → R, then we seek the decision
rule, d, which maximizes P(d(Ai) = yi).

The obvious choice for this decision rule would be the decision which maximizes the log-
likelihood [5] of the predictions of the individual classifiers:

d(ai) = arg max
yi∈{−1,1}

∑
j∈J

logPAi
j |Y

(aij |yi)

3.2.1 Spectral Meta-Learner

If we define the balanced accuracy, πj , of an agent j as

πj =
1

2
(ψj + ηj), (6)

where ψj is sensitivity, P(aij = 1|yi = 1), and ηj is specificity, P(aij = −1|yi = −1), then, as shown
in [21], the decision rule can be written in terms of the sensitivity and specificity of each agent,

d(ai) = sign

 m∑
j=1

aj

(
log

(
ψjηj

(1− ψj)(1− ηj)

)
+ log

(
ψj(1− ψj)
ηj(1− ηj)

)) . (7)
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This form of the maximum likelihood estimate invites an expectation-maximization (EM) approach
to improve the decision rule [5]. As the agents label more images, by using the decision rule labels,
we can improve our estimate of the agent reliability and increase the maximum likelihood of the
image label as shown in Algorithm 4.

We require a better than random initial guess for the image labels in order to initiate the
EM algorithm. As shown in [21], we can infer agent sensitivity and specificity from the spectral
properties of the sample covariance matrix of the agent classifications. We begin with the sample
covariance matrix for {ai}i∈I∗ , where I∗ ⊆ I is a set of images, |I∗| ≥ m, for which each agent has
labeled image i:

Q =
1

|I∗| − 1

∑
i∈I∗

(ai − ā)(ai − ā)T . (8)

It can be shown that the sample covariance matrix is nearly equal to a rank one matrix, qij ∝
(πi − 1

2)(πj − 1
2), so in fact, the principal eigenvector of the sample covariance matrix has entries

proportional to the balanced accuracy of the corresponding classifier. When combined with a first-
order Taylor series expansion of (7) about (ψj = 1

2 , ηj = 1
2) ∀j ∈ J , the decision rule simplifies

to

d(ai) = sign

 m∑
j=1

aj(πj −
1

2
)

 , (9)

a weighted linear combination of the decision of the individual agents by the principal eigenvector
of (8). Our approach, captured in Algorithm 4, implements a variant of the SML which accepts
non-fully-populated results and uses the first order approximation to not only initiate the EM
algorithm but also to label images not in the set of images classified by all agents.

This procedure provides more than simply a decision rule for joint classification. The absolute
value of the maximum likelihood estimate provides a measure of confidence in the image label,
si, and the updated estimate of the agent balanced accuracy provides a measure of reliability, rj .
These values, in turn, update the assignment value, vji, in (1) for the next iteration.

3.3 System Implementation

Beyond providing a conceptual framework, our goal was to develop a system in MATLAB which
achieves task parallelism across agents performing image labeling at distributed workstations while
providing enough flexibility to accommodate varying ensembles of agents and assignment logic. All
software reported here was developed in MATLAB R2015a and later releases.

3.3.1 Flexibility

Flexibility could include many aspects of the image labeling system, but specifically, we want to
achieve flexibility in the number and type of agents as well as the logic used for image assignment.
We envisioned a system which works with as few as three agents and scales to dozens of agents while
also being agnostic to the type of agents connected, which should be easily facilitated since they
only require the hardware module to provide a binary decision to the system. This was achieved
by using an object-oriented programming paradigm (OOP).

Each remote agent runs a software module which interfaces with an abstract remote client
class. The abstract class provides the image handling and communication with the central server
of the system. Including a new type of agent simply requires writing a new software module which
interfaces with the remote client. On the central server, a complementary object of a local agent
class is instantiated for each remote agent. They provide the central server the means to send
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Algorithm 4: Modified Spectral Meta-Learner

Data: {Ai}i∈I
Result: {d(ai)}i∈I ,|si|,rj
Q = 1

|I∗|−1

∑
i∈I∗

(ai − ā)(ai − ā)T ;

v = {v`|` = arg max` λ`} s.t. Qv` = λ`v`; k = 0;
for i ∈ I∗ do

ski = vTai;

dk(ai) = sign(ski );

end
repeat

// E-step:

for j ∈ J do

ψk+1
j = P (aj = 1|dk(ai) = 1);

ηk+1
j = P (aj = −1|dk(ai) = −1);

rkj = 1
2(ψj + ηj);

end
// M-step:

for i ∈ I∗ do

sk+1
i =

 m∑
j=1

aj

(
log

(
ψ
(k+1)
j η

(k+1)
j

(1− ψ(k+1)
j )(1− η(k+1)

j )

)
+ log

(
ψ
(k+1)
j (1− ψ(k+1)

j )

η
(k+1)
j (1− η(qk+1)

j )

));

dk+1(ai) = sign(sk+1
i )

end
k = k + 1

until convergence;
for i ∈ I \ I∗ do

ski =
∑

j∈J r
k
j aj ;

dk(ai) = sign(ski )
end

assignments and receive labels from each remote agent. This is automatically scalable, as the
system is agnostic to the number of agents in the system.

In order to achieve flexibility in the assignment logic. A separate abstract class of assignments
provides the interface to the system for tracking the evolution of the system as well as generating
assignments on each iteration. Again, in order to implement a new logic paradigm, it requires
writing a software module which interfaces with the abstract assignment class.

A full software map is shown in Figure 5. The experiment class provides the environment in
which the system runs on the central server. It has a control object which maintains results and
calculates labels according to the joint classification logic. The control object has an assignment
object which generates assignments and collects image labels from the remote agents. The control
object also has a unique local agent object for each remote agent on the system.
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Figure 5: Software map of the image labeling system. There are five distinct classes in
the system: Experiment, Control, Assignment, LocalAgent, and RemoteAgent. The Re-
moteAgent objects live on distributed workstations, while all other objects live on the central
server. All workstations are networked with a shared image database.

3.3.2 Parallelism

Two levels of parallelism are important to the implementation of the image labeling system. There
is parallelism which occurs on the central server, and that which occurs among the remote agents.
Performance of the system is primarily concerned with the latter. The bulk of the wall time for
system convergence will occur while the respective remote agents are labeling images. If this cannot
take place in parallel, then the image labeling system cannot achieve meaningful speed-up over a
serial assignment policy.

On the central server, parallelism comprises asynchronous read-write calls which facilitate run-
time efficiency. Less important than sending image assignments and retrieving image labels in
parallel is handling them asynchronously. The retrieving of image labels would include critical
steps which would require serial processing regardless. The goal is then to allow the central server
to return to idle when not actively assigning images or retrieving labels and to efficiently handle
numerous run-time instructions in serial.

Much more important than parallelism on the central server is true task parallelism between
the remote clients. This is facilitated by affording each agent a dedicated workstation, or at least a
dedicated processor in the case of a computer vision agent, bypassing the need to share processing
time. A semi-distributed memory model, where the image database is read-available to all agents,
is used to alleviate the bandwidth burden on the network. This distributed workstation model with
distributed memory would usually be handled with a message passing interface (MPI), but here,
we are interested in multiple program multiple data programming (MPMD).

Implementing MPMD task parallelism in the image labeling system required the development
of a custom MPI. A usual MPI comprises worker management, point-to-point communication, and
collective calls [6]. Worker management consists of the tracking of available nodes for computation.
In the image labeling system, the nodes are actual agents at distributed work stations, and the
control object provides this management functionality. Point-to-point communication provides
the system with a means to pass messages between and among the central server and remote
clients. The local and remote agent classes provide this capability by maintaining a unique user
datagram protocol socket (UDP) for each distributed agent. The UDP provides the transport
layer of the internet protocol suite. It requires less overhead but affords less robustness than the
more common transport control protocol [22]. Since this system only communicates internally, the
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required reliability has been built into the software. Collective calls provide the MPI user with a
means to batch send programs and collect results from all nodes at once. The assignment object in
the image labeling system assumes this responsibility. Each implementation of the abstract class
has to have a function for generating and sending assignments as well as retrieving results when
available.

Event-driven programming provides the final element of facilitating efficient run-time perfor-
mance on the central server and achieving task parallelism between the distributed agents. By
allowing the occurrence of events in the system to drive the process flow, the central server can
remain idle while awaiting results from the distributed agents. The two events which drive the
process in the image labeling system are the initial beginning of the experiment and the arrival
of image labels to the central server. When the user starts the experiment, the process moves to
assignment, where an assignment is generated and sent in serial to each agent before returning to
idle. The system then remains in idle until a message arrives at a UDP socket, at which point,
the assignment retrieves the labels and records them in control. The same series will occur each
time a message arrives to the central server. Meanwhile, assignment tracks the status of messages
which it awaits, and when all messages return, the joint classification function is called, images are
classified, and a new assignment is generated and sent. The process flow is visualized in Figure 6.

Figure 6: Process flow on central server of image labeling system. Events drive the process
flow on the central server. The experimental user initiates the system. The assignment
object generates assignments, sends assignments to remote clients serially through the local
agent objects, and returns to idle. Upon the receipt of a datagram, assignment reads
the results via the local agent module, writes the results in control, and returns to idle.
System idle time is maximized through non-blocking read operations in order to facilitate
the asynchronous arrival of results from the remote clients.

3.3.3 Convergence Considerations

At each iteration, the image assignment problem uses parameters estimated from the joint classi-
fication, which introduces a memoryless feedback into the system. This necessitates consideration
of the stability and convergence of the system.

In order to initiate the system, prior to any inferred knowledge of the agent reliabilities or
image labels, we use a batch assignment to all m agents of m(m+ 1) images in order to adequately
estimate the sample covariance matrix (8).

Considering convergence of the system, we consider the stopping conditions. We define con-
vergence as all images labeled with sufficient confidence. Ideally, this is where the system would
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stop, but many things could happen to prevent this; images could be continually assigned to the
same reliable agent who has already seen the image, or some images may be equally hard for all
agents and never achieve sufficient confidence. In practice, there is no guarantee that all images will
achieve this confidence threshold even if all agents labeled the image. This means that a confidence
threshold should be some fractional value of maximum agreement of all agents. The value of this
threshold will likely impact the number of agents who must see an image for it to be classified,
and thus drive the wall time of the system. In order to address duplicate assignments, the value
of an assignment which has previously been made is set to zero for all subsequent iterations. This
is not a hard barrier, such as vji = −∞ would be, but it discourages duplicate assignment unless
necessary to satisfy the constraints of (1).

Stability of the system primarily depends on the assignment problem being strictly feasible.
As the system evolves, and images achieve confidence threshold, there will be the same number of
agents available to label fewer images; however, more of those agents will have seen some or all
of the images. This will correspond to the throughput rate of the agents; computer vision agents
will quickly exhaust the database, while slower human labelers will see a small fraction of it. For
images which have been classified by all high throughput agents and have yet to achieve confidence
threshold, it is necessary to increase the budget of low throughput agents to allow the system to
make these high value assignments. Essentially, the active constraints for the system will be those
of the reliable, low-throughput agents. If we can loosen these constraints, we can expedite system
convergence. This is true to the point that the assignment is pseudo-infeasible, which we define as
being unable to satisfy constraint [2] without zero-value assignments. This serves as an alternative
stopping condition for the system. In system implementation, we incorporate both a dynamic,
monotonically increasing budget for the agents, as well as an alternative stopping condition for
when the assignment problem is pseudo-infeasible.

4 Methods

All simulations and the experiment ran on a Unix-based desktop computer with two Intel Xeon
2.67 GHz processors, for a total of 8 cores to support independent processes. For the simulations,
agent performance was provided by simulation modules, which randomly generated both image
labels and pauses for their interface with the RemoteAgent objects. This framework allowed both
the simulations and the experiment to take place on a single multi-core workstation in which each
agent and the central server ran on a separate dedicated instance of MATLAB.

The simulated agents generated labels randomly according to a Bernoulli distribution, fAj |Y (aj |y) =
bern(pj). The agents generated service times for each image according to an exponential distribu-
tion, T ∼ exp(µ). The budget was a function of the speed of the agent, bj = Lk

µj
, where Lk is the

desired interval length for iteration k.
We wanted to simulate a scenario in which very little training data is available for the computer

vision algorithms such that both the human and RSVP analysts possess an accuracy advantage.
We encoded this expected performance into the simulation parameters, with the human agents and
RSVP agents having a higher relative accuracy than the computer vision agents, while maintaining
an order of magnitude difference in speed between each agent type. See Table 3 for a summary
of the agent parameters. For all simulations, we measured balanced accuracy (6), wall time, the
objective elapsed time while the system runs to convergence, and the number of overall assignments
to reach convergence.

Assigning all images to all agents in parallel already represents a speed-up over the serial labeling
of all images by all agents, but we want to specifically decrease the wall time of such a system;
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Type Accuracy (pj) Cost (cji) Service Time (µj)

CV 0.75 1 0.01s

RSVP 0.85 1 0.1s

Human 0.95 1 1.0s

Table 3: Properties of Simulated Agents. Human analysts provide the most accurate labels
but also require the most service time for each image. Computer vision agents require the
least service time but provide the least accurate labels.

therefore, we compared three assignment conditions of the proposed framework against this naive
parallel implementation:

• Naive - all images assigned to all agents in parallel in a single batch.

• GAP-2 - images assigned in parallel according to (1); images classified if confidence meets or
exceeds two, si ≥ 2.

• GAP-3 - same as GAP-2, but with si ≥ 3.

• GAP-4 - same as GAP-2, but with si ≥ 4.

All methods use Algorithm 4 to combine image labels. Additionally, we considered three distinct
ensembles of agents for the proposed system:

• CV × 6

• {CV × 2, RSV P × 2, H × 2} (Mixed)

• H × 6

4.1 Expected Results

We can determine the expected performance of the naive assignment condition analytically, which
provides a true performance ceiling to which the GAP assignment conditions can be measured.

The accuracy from the joint classification using the first-order approximation of the SML is
bounded from below by the accuracy of the best individual agent in the ensemble to within an
additive constant (Lemma S2 (iii) of [21]). This result depends on the strict conditional indepen-
dence of all classifiers and that all classifiers are better than random, which is easily satisfied by
the simulated agents in this experiment.

For the naive assignment condition, the wall time for a single agent to complete classification
of n images will be an Erlang random variable, Tj ∼ Erlang(n, µj), and the system wall time will
be the maximum of m independent, non-identical Erlang distributions, T = maxj∈J Tj . We can
numerically evaluate the probability density function,

fT (t) =
∂

∂t
P(max

j∈J
Tj ≤ t)

=
∂

∂t
P(T1 ≤ t, . . . , Tm ≤ t)

=
∂

∂t
P(T1 ≤ t) · · ·P(Tm ≤ t)

=
∂

∂t

∏
j∈J

FTj (t)
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=

∏
j∈J

FTj (t)

∑
j∈J

fTj (t)

FTj (t)

to calculate the mean, µT = E(T ), and standard deviation, σT = 2
√
E((µT − T )2), of the system

wall time.

4.2 Simulation 1

We compared the performance of a mixed ensemble over all four assignment conditions and collected
results from 30 trials of six remote agents classifying 200 images for each assignment condition.

4.3 Simulation 2

We compared the performance of three distinct agent ensembles using the GAP-2 assignment
condition: CV × 6, Mixed, and H × 6. These results provide context to any speed-up in the results
of Simulation 1 by comparing the mixed agent ensemble against a fully automated implementation
and a fully human ensemble. Again, 30 trials were collected for six remote agents classifying 200
images.

4.4 Experiment

In the final experiment, we applied the proposed framework with actual agents. We compare the
performance of the CV × 6 agent ensemble against another mixed ensemble ({CV × 5, H}) using
the GAP-2 assignment strategy. For our image database, we used a subset of the Caltech101
database [7]. We used the background category of images as the negative case and the brain
category of images as the positive case. We tested on 200 pre-selected images, 150 background and
50 brain. The computer vision algorithms used a pre-trained network [3] from MatConvNet [24]
to extract features from images, and the MATLAB internal support vector machine classifier with
all default settings to classify the features. The computer vision algorithms were trained on 20
randomly selected remaining images from each of the background and brain categories, for a total
of 40 training images, uniformly sampled from both classes. This produced very accurate computer
vision algorithms (population balanced accuracy of 0.922±0.020). The human labels were provided
by me through a single-image display with a two-button interface.

5 Results

5.1 Analytical Results

The analytical results for all ensemble conditions under the naive assignment condition are reported
in Table 4. The mixed agent ensemble matches the lower bound of balanced accuracy of the human
ensemble while benefiting from a lower expected wall time. With the automated ensemble, a 95×
and 99× fold speed-up can be expected versus the mixed agent and human ensembles respectively,
but this speed-up incurs a 21% decrease in the lower bound of balanced accuracy.

5.2 Simulation 1

All four methods exceeded the analytical lower bound of the mixed agent ensemble. The results
are summarized in Table 5. We first performed a one-way analysis of variance (ANOVA) which
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Agent Ensemble Accuracy (πj) Wall Time (µT ± σT )

CV × 6 0.75 2.2± 0.1s

Mixed 0.95 208.0± 12.0s

H × 6 0.95 218.3± 9.7s

Table 4: Analytical results of naive assignment condition.

Condition Balanced Accuracy Wall Time Images Assigned

Naive 0.988± 0.011 204.1± 7.9 1200

GAP-2 0.974± 0.014 124.1± 19.3 879.9± 16.3

GAP-3 0.975± 0.011 147.9± 21.8 983.1± 15.1

GAP-4 0.978± 0.011 204.4± 12.3 1047.6± 6.4

Table 5: Results of Simulation 1. The mean and standard deviation are reported for the
balanced accuracy, wall time, and number of images assigned for the varying assignment
conditions with the mixed ensemble.

reveals significant differences among the assignment strategies (see Figure 7(a)). For the three GAP
assignment conditions, there is not a significant difference in the means of the data at the p < 0.01
level, but there is a significant difference between the GAP conditions and the control in a multiple
comparisons test (GAP-2: p = 7.7× 10−5, GAP-3: p = 2.4× 10−4, GAP-4: p = 3.8× 10−3).

In the case of wall time, much more noticeable differences arise. An ANOVA reveals signifi-
cantly different mean wall times between the assignment conditions (see Figure 7(b)). GAP-2 and
GAP-3 achieve significantly lower run-times than the naive assignment condition under a multiple
comparisons test (GAP-2: p = 3.8 × 10−9, GAP-3: p = 3.8 × 10−9). The mean of the GAP-2
condition achieves a 1.6× speed-up over the mean of the naive condition, while the GAP-3 achieves
a 1.4× speed-up.

Again, an ANOVA reveals significant differences between the number of assignments (F (2, 87) =
1205.8, p < 1.0× 10−9). Under a multiple comparisons test, the number of overall assignments for
all assignment conditions is significantly different than that for all other assignment conditions at
the p < 1.0× 10−9 level.

The mixed agent system clearly achieved superior wall time under the GAP-2 and GAP-3
assignment conditions versus the naive assignment condition, but the results of the accuracy were
less clear. Although the naive condition achieved significantly better balanced accuracy than any
of the GAP conditions, we are more specifically testing the hypothesis that the GAP conditions
achieved or exceeded the analytical lower bound of the naive assignment condition. In this light,
the results are more favorable. Under a one sample t-test, it is almost certain that the accuracy of
the mixed ensemble GAP assignment conditions achieved or exceeded the analytical lower bound
of the mixed ensemble naive assignment (p-values of 8.5× 10−11, 7.7× 10−14, and 1.3× 10−14 for
the GAP-2, GAP-3, and GAP-4 conditions respectively). Under this more relaxed hypothesis, the
GAP-2 and GAP-3 conditions achieved the accuracy performance of the naive assignment condition
while significantly decreasing the wall time required to do so.
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(a) Balanced Accuracy (b) Wall Time

Figure 7: ANOVA of the performance of heterogeneous agent ensembles across assignment
conditions reveals significance in both the balanced accuracy (F (3, 116) = 8.8, p = 2.6 ×
10−5) and wall time (F (3, 116) = 186.5, p < 1.0× 10−9). Results reported as in Figure 4.

5.2.1 Increased Confidence

It should be expected that increasing the confidence threshold of the proposed system should have
a measurable impact on the confidence scores, si, of the images. As shown in Figure 8, the All
condition achieves a higher aggregate confidence score, but among the GAP conditions, there is
direct correspondence between increased threshold and increased expected image confidence.

Figure 8: Comparison of the distribution of confidence scores across the four conditions.
The All condition achieves a much higher mean confidence (10.3) than any of the GAP
conditions (GAP-2: 5.1, GAP-3: 5.3, and GAP-4: 5.6).

This also provides a visualization of how the proposed framework achieves the decrease in wall
time. The All condition benefits from the additional assignments and classifications to push more

20



images to an increased likelihood, but the GAP conditions use only enough assignments of each
image to achieve the minimal threshold. This is reflected in the number of image assignments
reported in Tables 5 and 6.

5.2.2 Evolution of Intervals

Due to the dynamic setting of the budget constraint, there is a temporal evolution of the classifica-
tion intervals. At first, the computer vision algorithms classify as many images as possible, but as
they exhaust the image database, the interval increases to allow the lower throughput labelers to
classify more images. This is particularly pronounced in the GAP-4 condition of Figure 9, where
we see significant divergence at iteration 5 in the mean interval length between the three GAP
conditions.

Figure 9: Comparison of the mean length of intervals in seconds among the GAP conditions.
The duration of intervals mirror each other until iteration 5, where there is a significant
deviation as the higher threshold method increases the interval to allow the lower throughput
labelers to classify more images.

5.3 Simulation 2

Not surprisingly, the ensemble with computer vision agents achieved the minimum wall time and
also the minimum accuracy, and the ensemble of human agents achieved the maximum accuracy and
the maximum wall time. The effect of varying the agent ensemble while using the GAP-2 framework
mirrored the analytical results of the naive assignment condition. Results are summarized in Table
6.

Significant differences in balanced accuracy are confirmed under a one-way ANOVA (see Fig-
ure 10(a)). Specific significant differences between the mixed ensemble and the automated (p <
1.0 × 10−9) and human (2.2 × 10−6) ensembles are confirmed under a multiple comparisons test.
Significant differences also arose in wall time (see Figure 10(b)), and under a multiple comparisons
test, the automated and human ensembles were significantly different than the mixed ensemble,
p < 1.0 × 10−9 and p < 1.0 × 10−9 respectively. Similar results were found in the overall number
of assignments to reach system convergence between the three ensembles (F (2, 87) = 1000.9, p <
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Ensemble Balanced Accuracy Wall Time Images Assigned

CV × 6 0.898± 0.030 6.3± 0.3s 913.8± 13.8

Mixed 0.974± 0.014 124.1± 19.3s 879.9± 16.3

H × 6 0.999± 0.003 294.2± 18.3s 770.1± 7.2

Table 6: Results of Simulation 2. The mean and standard deviation are reported for bal-
anced accuracy, wall time, and the number of images assigned for varying agent ensemble
conditions using the GAP-2 assignment strategy.

1.0×10−9). Under a multiple comparisons test, the mixed ensemble requires a significantly different
number of assignments than either the fully-automated ensemble (p < 1.0 × 10−9) or the human
ensemble (p < 1.0× 10−9).

(a) Balanced Accuracy (b) Wall Time

Figure 10: ANOVA of the performance of GAP-2 assignment condition across agent ensem-
bles reveals significance in both balanced accuracy (F (2, 87) = 255.47, p < 1.0× 10−9) and
wall time (F (2, 87) = 2667.44, p < 1.0× 10−9). Results reported as in Figure 4.

5.4 Experiment

Ensemble Balanced Accuracy Wall Time Images Assigned

CV × 6 0.938± 0.005 28.5± 2.5s 775.4± 8.0

Mixed 0.937± 0.006 70.2± 6.0s 774.7± 4.0

Table 7: Results of Experiment. The mean and standard deviation are reported for bal-
anced accuracy, wall time, and the number of images assigned for varying agent ensemble
conditions using the GAP-2 assignment strategy.

The results of the experiment do not reveal much difference in the behavior of the computer
vision ensemble and mixed ensemble besides a 246% increase in wall time from adding a human
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analyst. We do not observe a significant difference in balanced accuracy or the number of images
assigned at the p < 0.01 level.

(a) Balanced Accuracy (b) Wall Time

Figure 11: ANOVA of the performance of GAP-2 assignment condition across agent en-
sembles in the experiment. We do not observe a significant difference in balanced accuracy
between the two methods (F (1, 18) = 0.17, p = 0.68), but an analysis of wall time does
reveal a significant difference (F (1, 18) = 405.03, p < 1.0 × 10−9). Results reported as in
Figure 4.

6 Discussion

We presented an image triage system which leverages the collaboration of heterogeneous agents, and
we demonstrated the benefit of such a system versus a naive parallel implementation or a similar
homogeneous ensemble of agents in simulation. Three types of agents were simulated, representing
varying levels of accuracy and throughput. The system dynamically inferred the performance of
these agents using the SML and incorporated that information into subsequent assignments using
the GAP.

Even in the naive parallel implementation, the performance of the mixed agent ensemble pro-
vides a superior lower bound in balanced accuracy to that of the automated ensemble. Additionally,
the mixed ensemble provides a decrease in the expected wall time of the system. This substantial
increase in accuracy requires a sacrifice of a similar scale in wall time. This trade-off underlies the
challenge of optimizing such a system, but the proposed image triage system attempts to mitigate
the time cost of this trade-off through an intelligent assignment framework.

In Simulation 1, we observed the same mixed ensemble achieve similar accuracy in significantly
less time under the GAP assignment conditions. For the case of the GAP-2 assignment condition,
the system exceeded the guaranteed accuracy of the mixed ensemble naive assignment condition
while also affording a 1.6× speed-up over the mixed ensemble naive assignment condition. It
apparently accomplished this time savings by making 27% fewer overall image assignments.

The proposed framework minimizes the number of assignments in the system to achieve a desired
confidence. This goal is similar in nature to the CrowdSynth system proposed in [14], where the
control logic attempts to calculate the marginal value of recruiting another agent for labeling the
image. Here, that decision is encoded in the GAP problem and made simultaneously over all
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images. Interestingly, we observed a speed-up from this approach in the mixed ensemble, but the
automated ensemble and human ensemble required more time in the GAP assignment conditions
than that expected from the naive assignment condition. The time cost of this additional decision
process is apparently detrimental in the case of a homogeneous ensemble, which corroborates the
work of Karger, et al. in [15].

In the experiment with actual agents, we did not pose a problem of sufficient difficulty to prove
our findings. In this scenario, the accuracy differential between the computer vision agents and the
human analyst does not provide a sufficient advantage to the value of image assignments to the low-
throughput agent to justify the time cost. It is likely that in a better real-world implementation,
the results of incorporating a human into the system will be even more significant than in the
simulations. In particular, all agents here provided truly conditionally independent labels in the
simulations; however, this quality could be hard to realize in practice. Even different models
trained on the same data will introduce conditional dependence to the system. In application,
heterogeneous agents may provide the only means of introducing the necessary independence into
the ensemble.

7 Conclusion

In simulation, the proposed image triage system achieved human-level accuracy while minimizing
the time required to do so. These results introduce a framework for realizing the advantage of the
collaboration of humans and intelligent systems on a common task. The introduction of a human
to a less accurate automated image triage system can instantly increase the expected accuracy of
the system to the performance ceiling, and an intelligent assignment policy can minimize time cost
incurred to do so. Future work will confirm these findings in a real-world application of the image
triage system introduced here with human analysts, RSVP analysts, and computer vision agents.
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A Multiplier Adjustment Method

Algorithm 5: Multiplier Adjustment Method

Data: λi = max2 vji, xji = 0, ∀ j ∈ J, i ∈ I
Result: x, Z
for j ∈ J do

% Assign tasks with value greater than the multiplier according to the knapsack problem
I+j = {i ∈ I|vji − λi > 0};
[xj,I+j

, Zj ] = knapsack({vji − λi}i∈I+j , {cji}i∈I+j , bj);
end
while do

% Assign unassigned tasks with a value equal to the multiplier to capable agents

Ī = {i ∈ I|
∑
j∈J

xji = 0}; I0j = {i ∈ Ī|vji = λi}; J0
i = {j ∈ J |i ∈ I0j }; b̄j = bj −

∑
i∈I

cjixji;

x = arg max
x

∑
j∈J0

i

∑
i∈I0j

vjixji, such that
∑
j∈J0

i

xji ≤ 1, i ∈ Ī,
∑
i∈I0j

cjixji ≤ b̄j , j ∈ J ,

xji ∈ {0, 1}, cji, bji ∈ Z+, j ∈ J0
i , i ∈ I0j ;

if x is feasible then
return; % Assignment is optimal in GAP

end

for i = {i ∈ I|
∑
j∈J

xji = 0} do

% For unassigned tasks, find the least decrease in the multiplier to assign task
for j ∈ J do

δji = Zj(u)− vji + λi − knapsack({vjl − λl}l∈I|l 6=i, {cjl}l∈I|l 6=i, bj);
end

end

I0 = {i ∈ I|
∑
j∈J

xji = 0, min2(δ1i, . . . , δmi) > 0};

if I0 = ∅ then
return; % No more optimal assignment exists

else
% Attempt to assign tasks with minimal decrease in multiplier required for the task
to be assigned. If assignment is more optimal, then continue, else select another task.
for i∗ ∈ I0 do

j∗ = arg min(δ1i∗ , . . . , δmi∗); xj∗i∗ = 1;
[xj∗,i∈I|i 6=i∗ , Zj∗ ] = knapsack({vj∗i − λi}i∈I|i 6=i∗ , {cj∗i}i∈I|i 6=i∗ , bj∗);

I0 = I0 \ {i∗};
if
∑
i∈I

xji ≤ 1 ∀j ∈ J then

return to start of while loop;
else

revert x and try another i∗;
end

end

end

end
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